

Explainable AI: Intelligent Data Preprocessing and White Box Modeling by Symbolic Regression

Susanne Schaller, Stephan M. Winkler FH Oberösterreich, Campus Hagenberg Softwarepark Hagenberg

HAGENBERG | LINZ | STEYR | WELS

Explainable Al

Explainable AI (XAI) refers to methods and techniques in the application of artificial intelligence technology (AI) such that the **results can be understood** by human experts. It contrasts with the concept of the "black box" in machine learning where even their designers cannot explain why the AI arrived at a specific decision.

Systems Identification and Machine Learning

index	X1	x ₂	X ₃	X4	X 5	 x _n
0	5.7	6.76	1	true	"ah"	
1	9.2	-2.3	0	false	"үх"	
4	13.5	4.7	0	true	"flh"	
3	-3.8	8.4	1	false	"ht"	
Ν						

- Systems identification
- Modeling
- Process analysis
- Prediction
- Optimization

IPPER AUST

Black-Box vs. White-Box Modeling

Black-Box vs. White-Box Modeling

Black Box

White Box

White-Box Modeling

- Genetic Programming
 - > evolutionary process
 - > implicit feature selection
 - optimizes model structure and parameters
 - > generates interpretable formulas
 - > results directly applicable
 - > assessment of variable relevance

IPPER AI

White-Box Modeling

- Genetic Programming
 - > evolutionary process
 - > implicit feature selection
 - optimizes model structure and parameters
 - > generates interpretable formulas
 - > results directly applicable
 - > assessment of variable relevance

White-Box Modeling: Symbolic Regression in HeuristicLab

HeuristicLab

Open Source Optimization Environment HeuristicLab

- developed since 2002
- basis of many research projects and publications
- 2nd place at Microsoft Innovation Award 2009
- HeuristicLab 3.3.x since May 2010 under GNU GPL

Motivation and Goals

- graphical user interface for interactive development, analysis and application of optimizations methods
- numerous optimization algorithms and optimization problems
- support for extensive experiments and analysis
- distribution through parallel execution of algorithms
- extensibility and flexibility (plug-in architecture)

Distributed Computing with HeuristicLab Hive

- framework for distribution and parallel execution of HeuristicLab algorithms
- compute resources at Campus Hagenberg
 - > 2006 2011: research cluster 1 (14 cores)
 - > since 2009: research cluster 2 (112 cores, 448GB RAM)
 - > since 2011: lab computers (100 PCs, on demand in the night)
 - > since 2017: research cluster 3 (448 cores, 4TB RAM)

White-Box Modeling

I IPPER AUSTRIA

Model Simplification

- Simplification Methods
 - > mathematical transformation
 - > remove nodes
 - > constant optimization
 - > external optimization

- Export
 - > textual export
 - > LaTeX, MATLAB
 - > graphical export

$$y = x_1 \cdot x_2 + x_3 \cdot x_4 + x_5 \cdot x_6 + x_1 \cdot x_7 \cdot x_9 + x_3 \cdot x_6 \cdot x_{10}$$

Example: Virtual Sensors for Modeling Exhaust Gases

- high quality modeling of emissions (NOx and soot) of a diesel engine
- virtual sensors: (mathematical) models that mimic the behavior of physical sensors
- advantages: low cost and non-intrusive
- identify variable impacts: injected fuel, engine frequency, manifold air pressure, concentration of O2 in exhaustion etc.

$$NO_x(t) = f(x1_{(t-7)}, x2_{(t-2)}, \ldots)$$

Example: Virtual Sensors for Modeling Exhaust Gases

$$\begin{bmatrix} NO_x^*(t) \end{bmatrix} = \frac{2.696m_f^*(t-10) + 2.618m_f^*(t-7)}{\log(0.029N^*(t-10))} + \frac{\begin{bmatrix} 1.798m_f^*(t-5) \end{bmatrix} \begin{bmatrix} 7.536W^*(t-5) \end{bmatrix}}{\begin{bmatrix} 0.027N^*(t-9) \end{bmatrix} \log(0.031N^*(t-3))}$$

Figure 2: Poor performance of the same neural network model at other operating points

Kopulariouri Mariate (Karaular)

et (Calcel a of node (

Example: Blast Furnace Modeling

- results as formulas \rightarrow domain experts can analyze, simplify and refine the models
- integration of prior physical knowledge into modeling process
- powerful data analysis tools: model simplification and variable impact analysis

Example: Plasma Nitriding Modeling

Motivation

- > hardening of materials (e.g. transmission parts)
- process parameter settings based on expert knowledge
- Modeling Scenarios
 - a) prediction of quality values based on process parameters and material composition
 - b) propose process parameter settings to reach the desired material characteristics

Material composition Desired quality

Process parameter

Integration of Expert Knowledge

Model Analysis

Knowledge Integration

- specification of known correlations
- model extension through algorithm

Holistic Knowledge Discovery

- Variable interaction networks
 - > reveals non-linear correlations
- Variable frequencies
 - analyzed during the algorithm run

PAGE | 45

Acknowledgements

Bioinformatics Research Group

Heuristic and Evolutionary Algorithms Laboratory

http://bioinformatics.fh-hagenberg.at/

https://heal.heuristiclab.com/

