

OT Cyber Security Lab

2020 wurde das VERBUND OT Cyber Security ins Leben gerufen.

Das initiale Ziel von Projekten im OT Cyber Security Lab ist es, durch Innovation die Sicherheit im Bereich der operativen Technologie (OT) zu stärken und über die Konzerngrenzen hinaus eine Leuchtturmfunktion im Bereich der Sicherung kritischer Infrastrukturen einzunehmen.

Das Lab ist ein Kompetenzzentrum unter der Leitung von VERBUND zur Erforschung und Weiterentwicklung neuer Technologien im Bereich der OT, oft in Kollaboration mit Herstellern, Lieferanten und weiteren Partnern

Das Lab ist ein Innovationshub, um die Versorgungssicherheit in Österreich auch in Zukunft weiter gewährleisten zu können

Das Lab ist eine Testumgebung in welcher VERBUND mit Partnern in den Feldern Energiegewinnung, Technologie, Forschung, Software, etc. zusammenarbeitet, um richtungsweisende Innovationen für die Sicherheit von OT-Systemen zu entwickeln

Vision des OT Cyber Security Labs

Unsere Vision ist es, die OT-Sicherheit bei VERBUND kontinuierlich durch innovative Projekte zu verbessern. Um dies zu erreichen, gibt es sowohl Kooperationen mit Herstellern als auch Innovationsprojekte, in denen wir mit Expert:innen aus den verschiedenen VERBUND Gesellschaften zusammenarbeiten.


Die Projekte des OT Cyber Security Labs gliedern sich in mehrere kleinere sowie tiefer gehende und aufwändigere Projekte.

So kann ein ausgeglichenes und flächendeckendes Verhältnis zwischen effizienten Quick-Wins und nachhaltigen Großprojekten geschaffen werden.

Zusammenfassung Ergebnisse

Durch Pentests erkennen wir **reale Risiken** präventiv und können praxisnahe **Schutzmaßnahmen** ableiten.

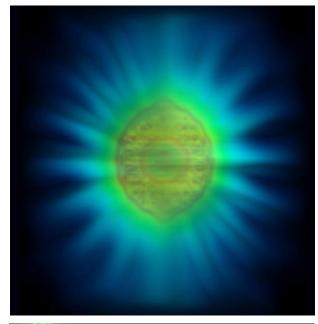
Reale Risiko-Validierung statt Annahmen

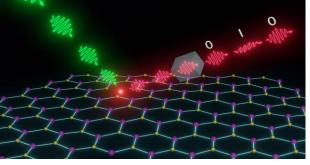
Früherkennung vor Produktionsausfall

Regulatorik und Quality Gates

Praxisrelevanz stärkt OT Security

Quantenkryptographie Grundlagen

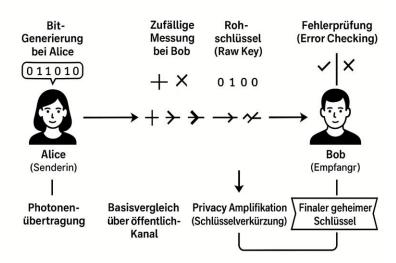

Quantenkryptographie ist ein Verfahren zur sicheren Kommunikation, das auf den Prinzipien der Quantenmechanik basiert – insbesondere dem **Verhalten von Photonen**.


Zentrale Prinzipien der Quantenkryptographie sind dabei:

- **Superposition** Ein Quantenzustand (z. B. ein Photon) kann gleichzeitig mehrere Zustände einnehmen, bis er gemessen wird.
- Quantenverschränkung bzw. Quantenüberlagerung Zwei Teilchen können so verbunden sein, dass Messungen an einem Teilchen sofort den Zustand des anderen beeinflussen, unabhängig von der Entfernung.
- **No-Cloning-Theorem** Ein unbekannter Quantenzustand kann nicht exakt kopiert werden, was Abhörsicherheit garantiert.

Die **Sicherheit** in der Quantenkryptographie basiert somit nicht auf Rechenleistung, sondern ist durch Naturgesetze **physikalisch garantiert**.

Das erste **Quanten-Verschlüsselungsverteilungsverfahren** ist das **BB84 Protokoll** (1984).



Quanten-Schlüsselverteilung Ablauf

Digital Power

- 1. Alice erzeugt eine **zufällige** Bitfolge, **Qubits** genannt (z.B. 011010), wobei jedem Bit eine **bestimmte Polarisationsbasis** zugeordnet wird (z.B. 0 sind 45°, 1 sind 90° usw.) und sendet nacheinander die Photonen an Bob.
- 2. Bob misst jedes gesendete Photon mit einer zufällig gewählten Basis (z.B. 45°).
- 3. Stimmen die Polarisation von Alice und die Basis von Bob überein entsteht ein **gültiges Bit**. Stimmen diese nicht überein erhält Bob nur ein **zufälliges Ergebnis**.
- 4. Alice und Bob teilen die gewählten Basen über einen **öffentlichen Kanal**. Alle Bits, welche keine übereinstimmenden Basen haben werden, **verworfen**.
- 5. Der Roh-Schlüssel besteht aus einer Aneinanderreihung von übereinstimmenden Basen.
- 6. Der **Roh-Schlüssel** wird im Zuge der Privacy Amplification noch **gekürzt und verdichtet**. So entsteht der **finale geheime Schlüssel** der z.B. für symmetrische Verschlüsselung verwendet werden kann.

Stichprobenartig vergleichen Alice und Bob einige Bits, um Abhörversuche zu prüfen.

Ist die **Fehlerquote** (QBER) zu hoch, wird die **Verbindung unterbrochen**, da dies auf Abhörversuche hinweist.

Quantum Pioneer Quantenkryptographie im Fokus der Security

VERBUND hat sich als **erster Energieversorger Österreichs** zum Ziel gesetzt, den Bereich der Quantenkryptographie für die sichere Datenübertragung im eigenen Weitverkehrsnetz zu beleuchten, um die Versorgungssicherheit Österreichs auch in Zukunft zu gewährleisten.

Durch den Aufbau einer **hybriden Teststellung** mit Post-Quantum-Algorithmen (**PQC**) und Quantum Key Distribution (**QKD**) kann innerhalb des VERBUND Weitverkehrsnetz die Performance sowie Funktionalität der sicheren Datenübertragung durch die Teststrecke erforscht werden.

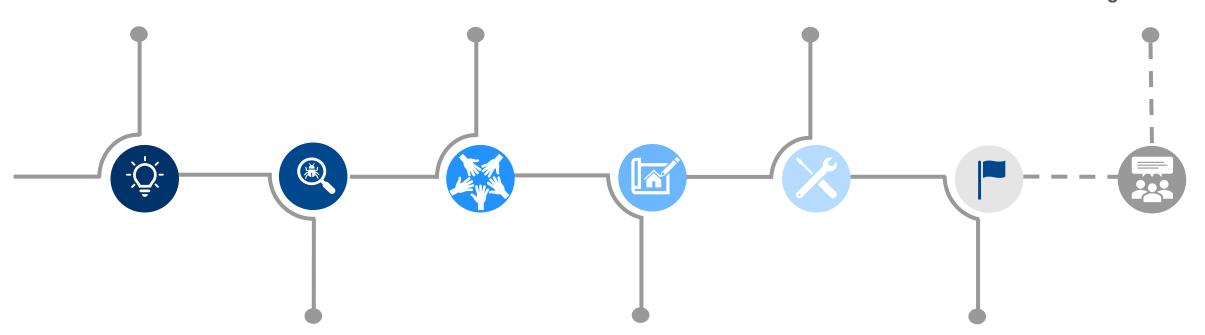
Hauptziel ist es erste Schritte in Richtung Quantenkryptographische Technologien als sicheres Übertragungsverfahren für sensible Daten vorzunehmen.

V

Vision des OT Cyber Security Labs

Juni – November 2023

Fachliche Einarbeitung in das Thema PQC und QKD


Jänner – April 2024

Planung konkreter
Maßnahmen zur Umsetzung
und Use-Cases

November - Dezember 2024

Erste Implementierung Teststellung

Nächste Schritte in Planung & Umsetzung neuer Anwendungsmöglichkeiten

Dezember 2023

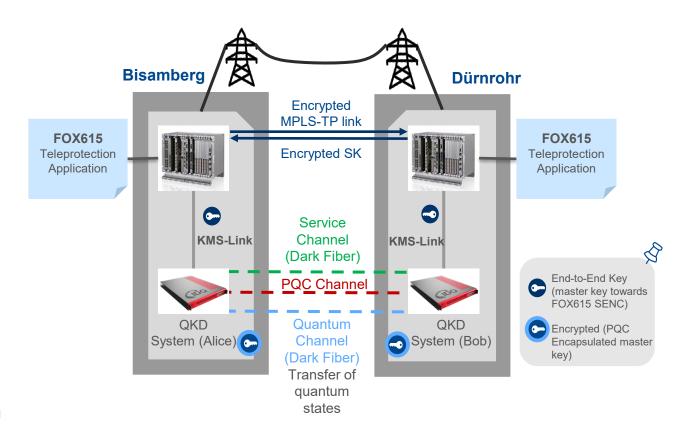
Durchführung von Penetration Tests von Teilkomponenten der geplanten Hardware

Mai - Oktober 2024

Fertigstellung des Testaufbaukonzepts und Erwerb der technischen Komponenten

Dezember 2024 & darüber hinaus

Nutzung des Testaufbaus mit spezifischen, auf Energieversorger ausgerichteten Anwendungsfällen zur Erprobung quantenkryptographischer Technologien



Quantenschlüsselverteilung bei VERBUND Projekt Quantum Pioneer

Digital Power

Das Projekt Quantum Pioneer beschäftigt sich mit dem Aufbau einer Teststrecke in unserem Weitverkehrsnetz mit Quantum-Key-Distribution (QKD) und Post-Quantum-Computing (PQC) Technologie.

- Testen quantenkryptographischer Technologie (QKD und PQC) für die sichere Datenübertragung im österreichischen Weitverkehrsnetz
- Gewinn neuer Erkenntnisse bzgl.
 Quantenschlüsselaustausch innerhalb eines Weitverkehrsnetzes
- Messung von Performance der Technologie in unserem Netz
- Zukünftige Forschung hinsichtlich Wettereinflüsse auf die Funktionalität der Quantum Key Distribution

Vorträge, Veranstaltungen, Podcasts, Mentoring

- Teilnahme an internationalen Konferenzen
- Aktive Partizipation in cross-nationalen Panels
- Mitwirkung an Mentoring- und Stipendiums-Initiativen, um mehr Frauen für technische Berufslaufbahnen zu begeistern
- Konzeption und Durchführung von OT-Security-Schulungen zur Steigerung von Awareness und Fachwissen an verschiedenen VERBUND-Standorten

VERBUND X Ventures

seeks to invest in early-stage startups all over Europe that accelerate the energy transition

Investment stage & ticket size

- Late Seed and Series A
- Ticket size: Up to €2.5mn for initial investments
- Role: (Co-)Lead Investor, Co-Investor

Focus areas

- Sustainable energy production
- Flexibility & energy transport
- Green mobility

Geographical focus

Based in Europe

Our ambition

15 Investments

2024-2026 Between 2024-2026

With a fund volume of €30mn

Since the launch in 2022, VERBUND X Ventures has invested in ten outstanding startups and one venture capital fund in the energy sector

Digital Power

Romania

Sweden

Austria

EOLOGIX-PING

Austria/Australia

Austria

Slovenia

Germany

Austria

Austria

Germany

OT-Security braucht reales Training

ICS Firing Range Prototype

- Simulation eines Angriffsszenario auf ein Laufkraftwerk
- Soll die Dynamik und die Auswirkungen eines Cyber Incidents greifbar machen
- Es kann ein programmiertes Angriffsszenario abgespielt werden, bei welchem von einem Hacker manipulierte Werte zu einer Überflutung des Landschaftsmodells führen
- Über den **Touchscreen** können Anweisungen an die Steuerung gegeben werden
- Je nach gewähltem **Zufluss** schließen oder öffnen sich die simulierten **Wehre**. Ist der Pegelstand zu hoch, öffnet der **Notablass** um das **Wasser** schnell **abzuführen**
- Funktion als interaktive Trainingskomponente

In unserer OT Cyber Security Range bereiten wir uns mit Cyber-Krisenübungen in einer gesicherten und realitätsnahen Umgebung auf den Ernstfall vor

V

